Изотопическая инвариантность - Definition. Was ist Изотопическая инвариантность
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Изотопическая инвариантность - definition


Изотопическая инвариантность         

свойство сильных взаuмoдействий (См. Сильные взаимодействия) элементарных частиц. Существующие в природе частицы, обладающие сильными взаимодействиями (адроны), можно разбить на группы "похожих" частиц, в каждую из которых входят частицы с примерно равными массами и одинаковыми внутренними характеристиками (Спином, барионным зарядом (См. Барионный заряд), Странностью), за исключением электрического заряда. Такие группы называются изотопическими мультиплетами. Оказывается, что сильное взаимодействие для всех частиц, входящих в один и тот же изотопический мультиплет, одинаково, т. е. не зависит от электрического заряда, - в этом и состоит симметрия сильных взаимодействий, называемая И. и.

Простейший пример частиц, которые могут быть объединены в один изотопический мультиплет, - протон (р) и нейтрон (n). Опыт показывает, что сильное взаимодействие протона с протоном, нейтрона с нейтроном и протона с нейтроном одинаково (если они находятся соответственно в одинаковых состояниях); это послужило исходным пунктом для установления И. и. Протон и нейтрон рассматриваются как два разных зарядовых состояния одной частицы - нуклона; они образуют изотопический дублет. Другие примеры изотопических мультиплетов: Пи-мезоны+, π0, π-) и Σ-Гипероны+, Σ°, Σ-), образующие изотопические триплеты.

Электрический заряд Q частицы, входящей в изотопический мультиплет, выражается формулой Гелл-Мана - Нишиджимы:

Здесь В - барионный заряд, S - странность (одинаковые для всех частиц в данном изотопическом мультиплете), а величина I3 пробегает с интервалом в единицу все значения от некоторого максимального значения I (целого или полуцелого) до минимального, равного - I : I3 = I, I - 1, ..., - I. Общее число значений, которые может принимать величина I3Q) для данного изотопического мультиплета, а следовательно, и число частиц в изотопическом мультиплете, равно 2I + 1. Величина I, определяющая число частиц в изотопическом мультиплете, называется изотопическим спином, а величина I3 - "проекцией" изотопического спина. Эти названия основаны на формальной математической аналогии с обычным спином частиц, поскольку, согласно квантовой механике, для частиц со спином J проекция спина на произвольное направление в пространстве может принимать через единицу значения от + J до - J, т. е. иметь 2J + 1 значений.

Так как нуклоны существуют в двух зарядовых состояниях, то для них (как и для всех других частиц, входящих в изотопические дублеты) 2I + 1 = 2, т. е. I = 1/2 а I3 может принимать два значения: + 1/2 для протона (что соответствует Q = + 1, так как у нуклонов барионный заряд B = 1, а странность S = 0) и - 1/2 для нейтрона (Q = 0). Изотопическому триплету пионов соответствует I = 1, а I3 равно + 1 для π+, 0 для π° и - 1 для π -.Частицы с I = 0 не имеют изотопических "партнёров" и являются изотопическими синглетами; к таким частицам относятся, например, гипероны Λ0 и Ω-.

Изотопический спин является, таким образом, важной характеристикой адрона - квантовым числом (См. Квантовые числа), показывающим, какое количество изотопических "партнёров" имеет данная частица (или в каком числе зарядовых состояний она может находиться).

На основе И. и. удаётся предсказать существование, массу и заряды новых частиц, если известны их изотопические "партнёры". Так было предсказано существование π°, Σ°, Ξ° по известным π+, π - ; Σ+, Σ - и Ξ - .

И. и. имеет место и для составных систем из адронов, в частности для атомных ядер. Изотопический спин сложной системы складывается из изотопических спинов входящих в систему частиц, при этом сложение производится по тем же правилам, что и для обычного спина. Так, система из двух частиц с изотопическими спинами 1/2 (например, нуклон) и 1 (например, π-мезон) может иметь изотопический спин I = 1 + 1/2 = 3/2 или I = 1 - 1/2 = 1/2.

В ядрах И. и. проявляется в существовании уровней энергии с одинаковыми квантовыми числами для различных изобаров (т. е. для ядер, содержащих одинаковое число нуклонов и отличающихся электрическим зарядом). Примером служат ядра 146С, 147N, 148O: основное состояния ядер 14С, 14О и первое возбуждённое состояние 14N образуют изотопический триплет, I = 1 (см. рис.). Все квантовые числа этих уровней одинаковы, а различие в их энергиях можно объяснить разницей электростатических энергий из-за различия в электрических зарядах этих ядер. (Основной уровень 14N имеет изотопический спин I = 0, поэтому у него нет аналогов в ядрах 14C и 14O.)

Из И. и. следует закон сохранения полного изотопического спина I в процессах, обусловленных сильными взаимодействиями. Этот закон приводит к определённым соотношениям между вероятностями процессов для различных частиц, входящих в одинаковые изотопические мультиплеты, а также к запрету некоторых реакций [например, реакция d + d → 4He + π° не может происходить за счёт сильных взаимодействий, так как для d (дейтрона) и 4He I = 0, а для π°-мезона I = 1]. Экспериментальной проверке таких предсказаний посвящено много работ на ускорителях заряженных частиц высокой энергии.

И. и. имеет место только для сильных взаимодействий и нарушается электромагнитными взаимодействиями (явно зависящими от электрических зарядов частиц, т. е. от I3), "сила" которых по порядку величины составляет примерно 1\% от сильных взаимодействий. Различие электромагнитных взаимодействий для разных частиц, входящих в один и тот же изотопический мультиплет, и обусловливает различие в их массах.

Лит. см. при ст. Элементарные частицы.

С. С. Герштейн.

ИЗОТОПИЧЕСКАЯ ИНВАРИАНТНОСТЬ         
независимость сильного взаимодействия от электрического заряда частиц внутри одного изотопического мультиплета. Пример: зарядовая независимость ядерных сил.
Изотопическая инвариантность         
Изотопическая инвариантность (от  — неизменяющийся) — свойство сильных взаимодействий элементарных частиц.

Wikipedia

Изотопическая инвариантность

Изотопическая инвариантность (от лат. invarians, invariantis — неизменяющийся) — свойство сильных взаимодействий элементарных частиц.

Существующие в природе частицы, обладающие сильными взаимодействиями (адроны), можно разбить на группы «похожих» частиц, в каждую из которых входят частицы с примерно равными массами и одинаковыми внутренними характеристиками (спином, барионным зарядом, странностью), за исключением электрического заряда. Такие группы называют изотопическими мультиплетами. Оказывается, что сильное взаимодействие для всех частиц, входящих в один и тот же изотопический мультиплет, одинаково, то есть не зависит от электрического заряда, — в этом и состоит симметрия сильных взаимодействий, называемая изотопической инвариантностью.

Простейший пример частиц, которые могут быть объединены в один изотопический мультиплет, — протон (p) и нейтрон (n). Сильное взаимодействие протона с протоном, нейтрона с нейтроном и протона с нейтроном одинаково (если они находятся соответственно в одинаковых состояниях); это послужило исходным пунктом для установления изотопической инвариантности. Протон и нейтрон рассматриваются как два разных зарядовых состояния одной частицы — нуклона; они образуют изотопический дублет.

Электрический заряд Q {\displaystyle Q} частицы, входящей в изотопический мультиплет, выражается формулой Гелл-Мана — Нисидзимы: Q = B / 2 + S / 2 + I 3 {\displaystyle Q=B/2+S/2+I_{3}} . Здесь B {\displaystyle B}  — барионный заряд, S {\displaystyle S}  — странность (одинаковые для всех частиц в данном изотопическом мультиплете), а величина I 3 {\displaystyle I_{3}} пробегает с интервалом в единицу все значения от некоторого максимального значения I {\displaystyle I} (целого или полуцелого) до минимального, равного I : I 3 = I , I 1 , . . . , I {\displaystyle -I:I_{3}=I,I-1,...,-I} . Общее число значений, которые может принимать величина I 3 {\displaystyle I_{3}} Q {\displaystyle Q} ) для данного изотопического мультиплета, а следовательно, и число частиц в изотопическом мультиплете, равно 2 I + 1 {\displaystyle 2I+1} . Величина, I {\displaystyle I} , определяющая число частиц в изотопическом мультиплете, называется изотопическим спином, а величина I 3 {\displaystyle I_{3}} — «проекцией» изотопического спина. Эти названия основаны на формальной математической аналогии с обычным спином частиц, поскольку, согласно квантовой механике, для частиц со спином J {\displaystyle J} проекция спина на произвольное направление в пространстве может принимать через единицу значения от + J {\displaystyle +J} до  J {\displaystyle -J} то есть иметь 2 J + 1 {\displaystyle 2J+1} значений.